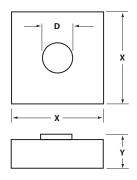
PIN Diode Chip for Hybrid MIC Switches/Attenuators



Data Sheet

Description

This PIN diode chip is silicon dioxide or nitride passivated. The 5082-0012 has a planar construction. The fabrication processes are optimized for long term reliability and tightly controlled for uniformity in electrical performance.

Outline

DIMENSIONS			
D	0.10		
±0.03 (1)	(4)		
X	0.38		
±0.05 (2)	(15)		
Y	0.23		
±0.03 (1)	(9.0)		
Top Contact	Au. Cathode		
Bottom Contact	Au. Anode		

Dimensions in millimeters (1/1000 inch)

Features

• Low Series Resistance: 1.0 Ω Typical

Applications

This general purpose PIN diode is intended for low power switching applications such as duplexers, antenna switching matrices, digital phase shifters, time multiplex filters, TR switches, pulse and amplitude modulators, limiters, leveling circuits, and attenuators.

Maximum Ratings

Junction Operating and Storage

Temperature Range	-65°C to +150°C
Soldering Temperature	+425°C for 1 min. max.

Electrical Specifications at $T_A = 25^{\circ}C$

Chip Part Number 5082-	Nearest Equivalent Packaged Part No. 5082-	Minimum Breakdown Voltage V _{BR} (V)	Maximum Junction Capacitance C _j (pF)
0012	3001	150	0.12
1	est ditions	$V_{\mathrm{R}} = V_{\mathrm{BR}}$ Measure	$\begin{aligned} V_R &= 50 \text{ V} \\ f &= 1 \text{ MHz} \end{aligned}$
		$I_R \le 10 \text{ mA}$	

Typical Parameters

Typical Series Resistance $R_S(\Omega)$	Typical Lifetime t (ns)	Typical Reverse Recovery Time t _{rr} (ns)
1.0	400	100
$I_F = 100 \text{ mA}$	$I_F = 50 \text{ mA}$	$I_F = 20 \text{ mA}$
f = 100 MHz	$I_R = 250 \text{ mA}$	$V_R = 10 \text{ V}$
		90% Recovery

Assembly and Handling Procedures for PIN Chips

1. Storage

Devices should be stored in a dry nitrogen purged dessicator or equivalent.

2. Cleaning

If required, surface contamination may be removed with electronic grade solvents. Typical solvents, such as freon (T.F. or T.M.C.), acetone, deionized water, and methanol, or their locally approved equivalents, can be used singularly or in combinations. Typical cleaning times per solvent are one to three minutes. DI water and methanol should be used (in that order) in the final cleans. Final drying can be accomplished by placing the cleaned dice on clean filter paper and drying with an infrared lamp for 5-10 minutes. Acids such as hydrofluoric (HF), nitric (HNO3) and hydrochloric (HCI) should not be used.

The effects of cleaning methods/solutions should be verified on small samples prior to submitting the entire lot.

Following cleaning, dice should be either used in assembly (typically within a few hours) or stored in clean containers in a reducing atmosphere or a vacuum chamber.

3. Die Attach

a. Eutectic

AuSn preform with stage temperature of 310°C for one minute max. AuGe preform with stage temperature of 390°C for one minute max.

b. Epoxy

For epoxy die-attach, conductive silver-filled or goldfilled epoxies are recommended. This method can be used for all Avago PIN chips.

4. Wire Bonding

Either ultrasonic or thermocompression bonding techniques can be employed. Suggested wire is pure gold, 0.7 to 1.5 mil diameter.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Avago Technologies: 5082-0012